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ABSTRACT

We have used spherical

gravity incorporating data from

harmonic rrlodels  for Venus’ global topography and

the Magellan  mission to test isostatic  compensation

models in several equatorial highlands. A spectral study was conducted on the global

harmonic models. We find that the power spectral density (PSD)  of the Venus

topography spectrum agrees quite well with a power - law scaling over a range in degree

1202 ! 23 with a spectral slope P-2 characteristic of Brown noise, similar to what is

observed for the Earth’s topography. However, for Venus the slope of the topography

spectrum seems somewhat shallower than the Earth’s and has significantly lower

amplitudes which might reflect the dominant lowland topography on Venus. The low -

degree part of the PSD for the Ve]ms geoid  anomaly also obeys a power-law with ~ -3,

consistent with Kaula’s  law for the Earth. For I >3 the Venus geoid PSD shows larger

amplitudes than for the Earth, a possible consequence of the strong correlations between

gravity and topography on Venus. For Venus, degree geoid  topography ratios (GTR) for

a geoid resulting from uncompensated topography are significantly larger than degree

GTRs for observed data, indicative of substantial compensation. Assuming a global Airy

isostatic compensation mechanism at a single depth d, most of the observed topography is

compensated at d - 150 km suggesting a thick lithosphere on Venus. Using the available

harmonic models we then obtained 5° x 5° mean values of Bougher  gravity for an

uncompensated topography (Ag~l), and observed gravity anomalies (Ag), topography

variations (h) and geoid anomalies (N) for five 30° x 30° sample regions representative

of the main classes of highlands found in the Venus equatorial zone. The samples

included: the topographic swells of Beta and Atla Regiones, the high-plateaus of Ovda

and Thetis Regiones, and a sample in the Chasmata area in central Aphrodite Terra, For

each sample region, a line was fitted to the data values of Agu ‘Ag plotted against Agu

with the slope defining a regional degree of compensation C. The N versus h data values

for each sample were compared, in the least squares sense, to theoretical correlations for
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Pratt, Airy, and thermal thinning isostasy models. lsostatic  model parameters included:

regional GTR and the corresponding depth of compensation W for the Pratt model, zero

elevation crustal thickness (H) for the Airy model, and the thickness of the unperturbed

(zero elevation) thermal lithosphere (yl,O ) for thermal compensation. We find that for

all sample areas considered, C is high and the correlation of the h, N data presents strong

coherence. For the Pratt and Airy model fits the respective parameter values are largest

for the Beta and Atla swells. Parameter values are smallest for Ovda and Thetis with

intermediate values for the Chasmata area. Although there are large variations in model

parameters for the regional fits, the h, N data correlations in the chosen area.. can be

explained by isostatic  compensation models applicable on the Earth and involving

variations in crustal (Airy) and/or lithospheric (thermal thinning) thicknesses. However,

a thick zero - elevation thermal lithosphere (yLO - 300km) must be assumed for Venus.

Compensation mechanisms COUIC1  then be distributed among our chosen regions as

follows: for Ovda and Thetis Regiones mainly Airy isostasy with H -50-60 km. For

the Chasmata  area sample Airy with perhaps a thermal component. Finally, a very strong

thermal component for Atla and Beta. Aphrodite Terra, which shows a marked eastward

increase in Pratt and Airy model parameters across its length, could be a candidate for

thermal isostasy decay from east to west.

1. INTRODUCTION

Following the completion of the altimetry and cycle 4 gravity data acquisition

phases of the Magellan  mission to Venus high degree and order topography (120x 120)

and geopotential  (60 x 60) spherical harmonic models were produced (Konopliv  et al,

1993). These models allow regional studies with spatial resolutions as small as -300 km.

Magellan  and Pioneer Venus Orbiter (PVO) tracking data used to produce the cycle 4

gravity model have poor resolution at high latitudes with respect to the spacecraft

periapsis,  a consequence of the large ellipticity  of the spacecraft orbits. Because of this

—
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an a priori constraint (Kaula’s law) had to be applied for the estimation of the gravity

model’s harmonic coefficients thus making any quantitative interpretation of the high

degree and order (ie small wavelength) part of this global gravity solution and of the

derived high latitude regional gravity data unreliable. However, during the 70 day

aerobraking experiment (which ended on August 6, 1993), the orbit of the Magellan

spacecraft was quasi circularized using aerodynamic drag. Using preliminary cycle 5 (ie

circular orbit) along with previous PVC) and cycle 4 Doppler tracking data a new 60 x 60

degree and order Venus geopotential spherical harmonic solution WM recently produced

(Konopliv and Sjogren, this issue). This latest model features lower overall uncertainties

than previous cycle 4 models and higher resolution gravity data at high latitudes in

certain areas of the planet (eg Ishtar Terra), with the highest resolution data still located in

the equatorial zone.

Correlations between topography and gravity data sets gathered from orbiting

spacecraft provide a basis for studying planetary interiors, especially when lacking in situ

(e.g. seismological) data. Topography variations on a planet are the surface expression of

a variety of geological

wavelengths. In the

compensated by low

and geophysical process and are generally compensated at long

case of the Earth,  topography highs are often isostatically

density roots. Anomalies in a planet’s gravity or geoid

(equipotential surface) are the consequence of variations in the distribution of mass at the

planetary surface and in its interior. Whereas local (i.e. small wavelength) gravity

anomalies better describe local uncompensated topography variations, anomalies in the

geoid are best suited to study the compensation associated with longer wavelength

regional topography anomalies. Indeed, if regional topography is compensated +en it

directly correlates with &e geoid anomalies for the considered region (lurcotte  and

Schubert, ‘1982). Thus to learn more about the compensation mechanisms and internal

evolution for a terrestrial planet it is useful to correlate geoid and topography data sets at

long wavelengths.
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Explaining the support (ie compensation) mechanism of the high topography on

Venus is of critical importance for testing the predictions of models describing the

thermal structure and evolution of the planet. It is now common practice to consider two

classes of mechanisms for explaining the high topography on Venus. First, one can

consider isostatic compensation models. Assuming Airy isostasy, many highlands on

Venus have large apparent depths of compensation (ADC)  thus requiring a thick

lithosphere. This led several authors (Phillips, 1990; Kieffer and Hager, 1991;

Bindshadler  et al, 1992 a,b) to consider a second class of models associated with the

dynamic support of topography through the pressure gradients associated with mantle

convection. These models imply a hot, thin lithosphere with steady-state heat loss.

However, it can be argued whether convection on Venus can indeed support the

topography and associated gravity (or geoid) anomalies. Large amplitude dynamic

topography on Venus requires high pressures (convective stresses) associated with high

mantle viscosities and low mantle temperatures. But, using parametrized convection

(Turcotte 1980), arguments can be made for a lower mantle viscosity on Venus than on

the Earth leading to higher values of the Rayleigh number (Turcotte,  1993). Also, on

the Earth there is little evidence for significant dynamic topography. Indeed, essentially

all terrestrial high topography can be explained isostatically  in terms of variations in

crustal or lithospheric  thicknesses. On Earth, high topography is associated with a thick,

strong lithosphere.

In this work we use the 120 X 120 Venus topography model and the newly

released 60 x 60 Venus geopotential  model incorporating the most recent cycle 5 tracking

data to obtain a series of averaged point values of topography (h) and geoid (N)

anomalies for several regions characteristic of the equatorial highlands of Venus (namely

in Beta Regio and Aphrodite Terra). We then examine the N and h data for each sample

region in terms of theoretical h, N correlations for Pratt, Airy, and thermal isostatic

compensation models. In section 11 we discuss harmonic models for Venus’ topography
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and geopotential. In section 111 wc analyze the power spectrum derived from the

topography and geoid  spectra in terms of power - law scaling and compare these results

to that obtained for the Earth’s spectra. We then compare degree geoid to topography

ratios (GTR) to theoretical degree GTR’s for a global isostatic compensation model at a

single depth and for uncompensated global topography. In section IV we introduce the

three isostatic compensation models and relevant model parameters which we fit to the h,

N anomaly data observed in each of the chosen sample areas. Finally, results of the three

model fits to the regional data are prestmted  and discussed in section V.

11. SPHERICAL HARMONIC MODELS FOR VENUS

In what follows we consider a frame of reference rotating with the planet and the

origin of coordinates at the center of mass of the planet,

It is standard practice to expand data sets on a planetary surface in a uniformly

convergent double series of surface spherical harmonics of degree ! and order m

(Heiskanen  and Moritz, 1967). For surface topography the radius R of the planet is

given by:

R(O, (p)=Rt

1 (/=1 m=O

(1)

where Rt is a reference radius, !n,a is the maximum degree considered (characterizing

the resolution of the expansion), O and ~ are the latitude and longitude, Xh,, and E&l are

the fully normalized dimensionless Stokes harmonic coefficients characterizing the

surface and Phi are the associated Legendre functions fully normalized with:

2n 1

114X
!1

PA (sine)
o -1

(2)
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R - Rt then represents the variations in topography with respect to a reference sphere of

radius Rt. Similarly, for the gravitational pc]tential  U (r, 6, ~ ) at a point outside the

planet, we have:

u (r,e,Q) = Q# (3)

where G is the universal gravitational constant, M the mass of the planet,  Rg is a

reference radius for the geopotential  expansion, r is the radial distance of the considered

external point with respect to the body - fixed coordinate system, ~& and Su,, are the

fully normalized dimensionless harmonic coefficients of the gravity field, and the ~k

are normalized as in Eq. (2). There are no terms in ! = 1 in Eq. (3) as a consequence of

the choice for the origin of coordinates.

]f Rt > Rg, it is convenient to rescale the gravity harmonic coefficients to the

reference radius Rt , This can be done by multiplying the C& and Sh by the resealing

factor (R~ / Rt ~ ~ for all ~ and m. From here on we assume the ~k and S&l are

resealed values, with RO = Rt = Rg in the expansions we consider.

If one introduces U* the gravitational potential of a reference ellipsoid expressed

as a spherical harmonic expansion with C; o terms only (13almino,  1986) we can then

define an anomalous (or disturbing) potential T as :

1 !=2 m=O

(4)

geoid anomaly (or height) N with respect to the reference geoid can then be obtained via

13runs’ formula as (Heiskanen  and Moritz, 1967): N = T/y, ‘y (e) being the “normal”
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gravity of the reference ellipsoid at a point (r, o, V) On tie reference elliPsoid. Now, in

the spherical approximation, we can formally (but not geodetically) treat the reference

ellipsoid m a sphere of radius RO in equations relating quantities of the anomalous field

(ie the flattening is neglected); in the. case of the geoidal anomalies for the Earth, the error

in doing so is only - 3x1 0-3N, ie less than 1 m for N=100m (Heiskanen  and Moritz,

1967; Moritz,  1980) which is quite acceptable for the purpose of our study. In this

approximation, we thus have:

N(Wp)  = I&

1 !=2 m*O

(5)

The gravity anomaly Ag can be obtained from the disturbing potential T as

(}leiskanen and Moritz, 1967):

hg.-.~-~ (6)

which yields, after substituting T from Eq. (4) in Eq. (6)

In the spherical approximation, Eq. (7) then becomes

Ag =

1

,_
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Long wavelength (ie small I ) geoidal undulations (anomalies) N are amplified

relative to gravity anomalies Ag; indeed, it can be

Lliboutry, 1982) that, in the spherical approximation:

Aghl /gO = (! -1) N~n /RO

with:

shown (Watts and Daly, 1981;

(9)

(lo)

For large values of ! (ie small wavelengths) geoidal undulations smooth out gravity

anomalies as 1/(!--1) . Thus for studying density anomalies at depth it is more useful to

study

km).

geoid anomalies on a regional scale (ie wavelengths greater than a few hundred

In this paper we use a new 120x120 spherical harmonic model for Venus’

topography produced at the Jet Propulsion Laboratory (JPL) (Konopliv  et al, 1993;

Rappaport, 1994). The normalized spherical harmonic coefficients of the topography

model were individually computed by numerical quadrature over the surface of Venus

from a grid of averaged planetary radii (grid spacing of 10, obtained from the complete

set of Pioneer Venus Orbiter (PVO) and Magellan  altimetry data (Ford and Pettengill,

1992). The mean reference radius obtained for this model is Rt = 6051.839 km. The

model is illustrated in Fig. la which shows a contour map of the observed variations for

Venus topography above and below the reference radius Rt. For consistency with the

geoid anomaly map of Fig. 1 b the topography expansion was truncated at degree and

order 60.

We also make use of a 60 x 60 spherical harmonic

geopotential  (namely “MGNP60FSAAP”)  recently obtained by

model for the Venus

Konopliv  and Sjogren

(this issue). The fully normalized harmonic coefficients for this model were estimated

using JPL’s Double Precision Orbit Determination Program (DPODP)  (Moyer, 1971),

from the combined two-way coherent Doppler shift data from the tracking observations
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of the PVO spacecraft (S-band data) and the Magellan  spacecraft (higher resolution X-

band data). The Magellan  data include global cycle 4 tracking data and cycle 5 quassi

circular orbit (197 km periapsis altitude, apoapsis 540 km) high resolution tracking data

in a longitude band extending from -90° W to + 20° E. For this model the reference

radius is Rg = 6051.0 km. We first resealed the geopotential  coefficients to the reference

radius of the topography model (ie to R. = Rt) and then derived the harmonic

coefficients for the geoid anomaly N in the spherical approximation using Eq. (5). For

Venus, the reference ellipsoid is taken to be (in the geometrical sense here) a sphere of

radius RO, so that A~~Il  = ~k, (ic flattening f=(l). A contour map of the variations in

the height of the Venus geoid with respect to the reference geoid  is given in Fig. lb. The

strong positive correlation between Venus topography and geoid (Phillips et al., 1979;

Sjogren et al. 1980) is readily apparent in Fig. la and 1 b.

Both the PVO spacecraft and Magellan  spacecraft (in cycle 4) moved in very

excentric orbits while raw Doppler tracking data was being acquired. As a consequence,

the highest resolution (-200 km) gravity data WM obtained at latitudes close (-&? O”) to

spacecraft periapsis  (15° N for PVO, 10° N for Magellan)  and the lowest resolution

gravity data near the poles (eg Ishtar Terra was poorly resolved). Although the cycle 5

data in the MGNP60FSAAP  solution is still incomplete, this new model provides

improved harmonic coefficient estimates and higher resolution in the polar regions

corresponding to the longitude band of the current cycle 5 data coverage. This is

especially true in the Northern latitutes  with Ishtar  Terra’s resolution now greatly

improved. Because MGNP60FSAAP also incorporates PVO and cycle 4 data, which

include a large difference in resolution with latitude, the application of an a priori

constraint in the estimation of the high degree and order harmonic coefficien~  is still

required. Without this constraint the solution is unstable above degree and order --25.

However, when generating the harmonic coefficients of the PMGN60FSAAP solution,

the bias was applied locally; namely, surface accelerations resulting from a biased
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(Kaula’s law) harmonic model were used as input to the ODP program only for regions

where uncertainties in the gravity data were highest (Konopliv and Sjogren, this issue),

Both a biased (ie with Kaula a priori locally applied) and a non biased solution were

generated. For the latter solution, the formal error in the geoidal undulations (anomalies)

is still smallest in an equatorial band extending -~300  about periapsis  of the Magellan

spacecraft (Konopliv  and Sjogren,  this issue).

In the following section we will restrict our global  analysis of the geoid spectrum

to the lower degree part, and in section V, for our regional study of topography and geoid

data correlations, we will focus on the area where the highest resolution raw gravity data

was acquired, namely the equatorial latitudes.

111. GLOBAL SPECTRAL STUDY

The discrete (degree) power spectrum of

observed on a planetary surface and expanded

a given field (geophysical

in a spectrum of surface

quantity)

spherical

harmonics summarizes information on the wavelength characteristics (variations) of the

field (Lambeck,  1988). We define the degree variance of the harmonic spectra of the

(11)

for the topography, and:

t

Vf = R: ~ (AC& +  AS&) (12)
nl=O

for the geoid anomaly, where RO = Rt for the Venus data. We then define the degree

Power Spectral Density (PSD) for these expansions as: Pi = V@cO = kOV~ for the

topography, and P~ = V~/kO = LOV[ for the geoid  variations, where LO = Zrt RO is the
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wavelength over which data are included in the expansions and kl = I/& = !/2nRo  is the

wave number.

For the topographic variance spectrum of the Earth it has been noted (Vening -

Meinesz,  1951) that Vi - E_2. Similarly, for the Earth’s geopotential  there is also a

systematic dependence on degree for the variance spectrum V~ - !_3 , known as

Kaula’s  law.  In  our  nota t ion ,  for  the  Ear th’s  geoid  PSD,  Kaula’s  law is :

P~ - !_3 or, alternatively, P~ - k~3. Such a dependence on ! for the Earth’s gravity

spectrum has been attributed to a random distribution of density anomalies at depth

(Lambeck,  1976; Kaula,  1977). A spherical harmonic representation is said to be

statistically scale invariant over a given range in wavelength if its PSD has a power-

law dependence  on  wave-number  (Turcotte,  1987; Kucinskas  et al., 1992):

P! (l@ = Ck~P, ~ >0 and C being constants (– ~ is the slope).

In Fig.2a and 2b we give the degree PSD (in km3) for the global topography of

Venus (!~,X = 120) and the Earth (!~m = 180 ) plotted against k! (in km-l) in a log - log

scale (open circles). The PSD spectrum for Venus was obtained using the 120 x 120

model of Rappaport  (1994) and that for the F.arth using the “ETOPO 5“ 180 x 180 model

of Rapp (1982; )989). The I~arth’s harmonic model is for “equivalent rock

topography” (Balmino  et al, 1973; Pavlis and Rapp, 1990) with a reference radius R =

6371.0 km. The fully normalized model coefficients were computed from 10 x 10 mean

elevations and depths.

for the

model

Ck~P

1202

For 1!< 3 the Venus topogmphy spectrum shows a rollover. This is also observed

Earth topography but the power deficiency starts at a higher degree ~ -5. We then

the decay of the PSD spectra for each of the two planetary topographies as

by performing a linear least squares fit of the log-log spectra over a degree range

! >3 for Venus  and 180> 1! 25 for the Earth. Results of the fits, namely the

slope -~ and intercept K = loglo  C, are given in Table 1.



Page 14

Over the respective degree intervals for the fits, we see that both the Venus and

Earth topography data agree well with a power-law spectral correlation with ~ = 2 (solid

correlation lines in Fig. 2a and 2b). ‘l”his correlation is characteristic of Brown noise,

with amplitudes directly proportional to wavelengths and the height to width (ie aspect)

ratios of elevated features of various scales being the same. We also note that the Venus

spectrum has signillcarttly lower amplitude values than that for the Earth data and that the

Venus topography spectratslope  is slightly shallower than the Earth’s (P -1.7 versus ~ -~

). This confirms with the Magellan data a result reported earlier by other authors who

compared the Earth’s topography with IWO Venus altimetry (Kaula, 1984; Turcotte,

1987). For Venus, the hypsometric  histogram is unimodal whereas the Earth’s is bimodal

(McGill et al, 1983). Indeed, there is a predominance of “rolling plains” topography on

Venus with more than 80% of the surface lying within 1 km of the mean planetary radius

(6051 .839 km) (Masursky  et al, 1980; Phillips et al, 1981; Ford and Pettengill,  1992).

Kaula (1984) sees in this confinement of regions of marked topography anomalies to a

few regions on the planet an explanation for the smaller amplitudes and shallower

spectral slope observed for the Venus topography spectrum.

We show the degree PSD (in m 3) for the Venus and Earth geoid anomaly data in

Fig. 3a and 3b, plotted versus kt (in km-l)  on a log-log scale. The spectra were obtained

using the 60x60 harmonic geopotemtial  model of Konopliv and Sjo.gren (this issue) for

Venus and for the Earth using the JCihf-2, 70x70 geopotential  model  from the

Topex/Poseidon  mission (Nerem et al., 1994). The geoid  anomaly for the Earth model

was determined using Eq. (5) and with respect to a reference ellipsoid with an equatorial

radius of 6378.1363 km and a flattening f = 1/298.2570 as a best fit to the Earth’s geoid.

In Fig. 3b the PSD values  for the Earth g,eoid  anomaly are plotted as open circles

symbols.’ For the Venus geoid undulations in Fig. 3a, we plotted PSD values

corresponding to the biased (ie. with Kaula  a-priori) 60x60 geopotential  solution

“MGNP60FSAAP” as open circle symbols and PSD values corresponding to the unbiased
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(ie with no Kaula a-priori) solution as dots. We notice that the unbiased spectrum still

diverges from ! - 25 as the no-bias geopotential  solution becomes unstable. Also, it is

seen that for the bimed  model’s PSD there is a noticeable drop in the spectrum at degree

! -25 a consequence of the a-priori constraint when estimating high degree and order

coefficients. We further note that the geoid  spectrum for Venus presents a rollover at the

same degree ! - 3 as its topography counbxpart. The Earth’s geoid spectrum also

presents a change in slope at low degrees, but the cutoff is less clear.

We also performed a linear least squares fit corresponding to the Ck~P model to

the log- log  geoid  s p e c t r a  o f  V e n u s and the  Ear th  over  the  ranges  of

252 ! 23 and702~23 respectively. From the results of the fits in Table I we see that

Venus and Terrestrial geoid  data indicate the application of a power-law scaling (solid

correlation lines in Fig. 3a and 3b) over the range in degree of each fit. For both the

Venus and Earth geoids we obtain ~ -3, consistent (within experimental scatter) with

Kaula’s law. Also, for ! >3 the Venus geoid  PSI) has larger amplitudes than Earth data,

a possible consequence of the strong positive correlation between gravity and topography

on Venus (Phillips and Malin, 1983).

For given geopotential  and topography harmonic expansions we define a

corresponding degree geoid  to topography ratio (GTR) as: GTRt = (V~/ V~)ln  , estimated

in this paper in units of mlkm. GTR’s from observed data can then be compared to

theoretical GTR’s derived for various simple compensation models so as to test the

validity of the models and place constraints on the global average compensation

mechanisms for the planet.

For a clmsic two layer model with planetary surface topography isostatically

compensated at a single global depth of compensation d the spherical harmonic

coefficients for the resulting “topographic isostatic” model geopotential  are given, in a

spherical geometry and to first order, by (Rummel et al, 1988; Rapp, 1989):
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(13)

where & is the mean planetary raciius, pC is the surface (crustal) density and p the

m e a n  p l a n e t a r y d e n s i t y  w i t h  F = 31W4Z R: . F o r  V e n u s ,  w e  t a k e

Pc  = 2.9 g/cm3, and p = 5.244 g/crn3 (McNamee et al., 1993). This theoretical

geopotential  corresponds to an Airy isostatic model at a global compensation depth d or,

equivalently, to a Pratt isostatic  compensation at depth W= 2d (Dahlen, 1982; Hager,

1983; Bills et al., 1987 ).

For uncompensated topography, the harmonic coefficients of the resulting

(Bougher) geopotential are given by:

(14)

Using the spherical

we can introduce

harmonic coefficients for the isostatic geopotential model in Eq. (11 )

the degree variance V~}i for the geoid anomaly of an isostatic

compensation model at depth d. Then, the corresponding isostatic compensation degree

GTR is just: GTR~ = (V~+i/V/)1’2 where V{ is the degree variance for the observed global

topography. Similarly, for uncompensated topography, the degree GTR is:

GTR~ = (V~+” / Vi), with V~I”  the degree variance for an uncompensated topography

model geoid anomaly. In what follows CJTRt  will denote the degree GTR for the

observed geoid and topography data,

In Fig. 4 we plot the degree GTR (in m/km) for Venus versus degree (! (with

Q“l,X =60 ) in a log-linear scale for both the observed data (open circles) and an

uncompensated topography model (solid curve). It is seen that the GTR~ ratios are much

larger than the observed GTRl values for all !. At long wavelengths (L -1,400 km) we

find the observed geoid signal to be - 15% of the uncompensated topography geoid
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signal. Thus, much of theobservedgeoid  anomalies can be directly associated with

compensated topography.

In Fig, 5weshow  thedegree  GTR~ p]otted versus! (with~mm  =60) for Airy

isostasy  models with compensation at depths of 50, 150and300km  (solid curves). The

observed degree GTR~ are also plotted (open circles). We believe the drop in GTRt

occurring from ! - 20 is an artifact due to the a-priori constraint used to estimate the

coefficients of the Venus geopotential. This phenomenon was noted earlier in the decay

of the Venus geoid PSD. Given this we think ,there is reasonable agreement, for most

values of! >6, between the observed data points and an Airy model curve with a

global depth of compensation d - 150 km. To test this further we plotted in Fig. 3a (as a

dashed curve) the degree PSI) for an Airy model geoid corresponding to Venus

topography compensated at a depth of 150 km. Except for the lowest degrees there is

good agreement with the ~ - 3 correlation line we fitted to the low degree part of the

observed geoid  data. Thus, for the Venus data, assuming a global Airy isostatic

compensation mechanism at a single depth, most of the observed topography is

compensated at depths in excess of 100 km thus implying a thick crust and lithosphere on

Venus. In the case of the Earth, a good agreement with the observed geopotential PSD is

found for an Airy-model PSD with d-50 km (Rapp, 1982; Rummel et al, 1988).

Iv . ISOSTATIC  COMPENSATION MODELS

Density variations within the lithosphere of a planet contribute significantly to the

observed surface gravity and geoid anomalies. Over shorter wavelengths topography

(with crustal  density pc) is essentially uncompensated and correlates with the

corresponding local gravity anomaly Agu through the Bougher gravity formula (Turcotte

and Schubert, 1982, equation 5-11 1). Over larger wavelengths (a few hundred km for the

Earth), topography can be expected to be largely compensated. In the case of the Earth,

high topography is generally associated with a thick, strong lithosphere. Essentially all
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terrestrial topography can be explained either by changes in crustal thickness associated

with Airy isostasy  (as for the continents or some oceanic plateaus) or by variations in

lithospheric  thickness associated with thermal isostasy as is the case for mid-ocean ridge

bathyme~  (thickening of a cooling, ocean lithosphere by conductive heat transport to the

surface) and for continental and oceanic intraplate hot-spot swells (Iithospheric thinning)

(Turcotte, 1989),

In regions of isostatic or hydrostatic equilibrium (HE) the net mass in vertical

columns of material must be equal. In terms of the density distribution Ap in the

lithosphere this condition can be w~itten as (Haxby and Turcotte, 1978):

1:’ L@ (y) dy = O (15)

where tc is the thickness of the considered column of material and y is the vertical

coordinate (or depth). Thus, while the study of gravity anomalies is indeed important for

determining the relationship between gravity and local topography (Bougher  formula)

and to tell us to what extent a given region is isostatically  compensated, gravity

anomalies are not the best sources of information on the dependency of density on depth

and on the mechanisms of compensation operating in the lithosphere. This is

accomplished much better by the study of the perturbations in a planet’s equipotential

surface (geoid).

Indeed, using the technique of matched asymptotic expansions, Ockendon and

Turcotte  (1977) showed that geoidal  anomalies or undulations are non zero in

isostatically  compensated regions and measure the dipole moment of the local density

distribution below the point of observation. In the case of a shallow, long wavelength

isostatic density  distribution Ap the resulting isostatic  geoid anomaly N is directly

proportional to the dipole moment of the local density distribution according to (Haxby

and Turcotte, 1978):

.
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N = -- ~&G J:’” y @ (y) dy

where go is the “normal gravity” or the gravity acceleration

(16)

for the reference ellipsoid

measured on the reference geoid,  G is the universal constant of gravitation, and ~ and y

are as defined in Eq. (15). For the E,arth this relationship (often referred to in the

literature as the “HOT” equation) is usually a good approximation for wavelengths larger

than a few hundred km, when there is near total isostatic compensation.

Once a density model distribution is assumed and a reference state is defined the

HE and HOT relationships yield a theoretical expression for N in terms of observed h

which can then be compared, in a forward modeling approach, to observed regional

values of N to get a better understanding of the (a priori unknown) local state of

compensation and estimate compensation model parameters. In this investigation, mean

values of observed N and h data for each of our sample equatorial regions on Venus were

compared to theoretical h, N correlations for three isostatic compensation models: Pratt,

Airy, and thermal thinning of the Venusian lithosphere. The three models and their main

parameters are illustrated in the diagrams of Fig. 6.

(a) Pratt-Hayford  Compensation Model

For the Pratt-Hayford model isostatic compensation and thus support of high

surface topography is achieved by a mass column with horizontal variations in density

over a prescribed “depth of compensation” W (that is a constant crustal thickness). This

model is illustrated by the diagram in Fig. 6a. Here,

column i is related to ‘the elevation h above the

relationship (HE) of Eq. (15) as:

Pi = Pcl W1 w + h)

the variable density pi of a given

reference level by the isostatic

(17)
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where p. is the density of the reference column (ie with zero elevation with respect to the

reference surface). Then, using Eq. (16) (ie the HOT relationship) and HE to eliminate

pi, and taking crust with zero elevation as the reference level or “state” the local Pratt

geoid  anomaly Npratt  associated with the compensated observed topography variation h is

given by:

‘Pratt = ~~ poW h (18)

with go and G defined above. The Pratt g,eoid anomaly is a linear function of the

topography variation. One can then define the local geoid  to topography ratio. (GTR) as

GTR = Npraf( / h (19)

and thus express the depth of compensation W as a linear function of GTR using Eq.

(18) as:

W = GTR (g. /rc G Po) (20)

on the Earth W approximately corresponds to the depth to the asthenosphere  (ie the

thermal lithosphere thickness). III this paper p. is the density pln of the Venus mantle,

with p. = pnl = 3300 kg n~-3 (Turcotte, 1993), and go = GM/Ro2  = 8.87 m S-2. GTR is

given in m/km and W in km.

(b) Aiqy - Heiskunen  Compensation Model

Next we considered an Airy - Heiskanen  compensation mechanism, shown in the

Fig. 6b diagram. Here the surface topography is isostatically  compensated by low and

constant density crustal roots which replace higher density mantle rock. The thickness of
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the must with zero elevation with respect to the reference level (sphere of radius RO here)

is noted as H. From the principle of hydrostatic equilibrium (HE) in Eq. (15) the

thickness of the root b is related to the crustal elevation h as:

b(h) = ~. h /(pm - pc) (21)

with pc the crustal density and pn, the underlying mantle density. Then, taking for the

reference state the continental crust with zero elevation and using Eq. (17) to substitute

for b, the Airy geoid anomaly associated with the compensated topography h is obtained

from Eq. (16) (HOT formula) as:

TcGpcNAiry = ~o - - -
[ 12 H h + ----P~----  h2

(Pnl-  P. )
(22)

For the Airy correlation, N is a quadratic function of elevation h. We took pc = 2900 kg

m-s for the Venus crustal density based on Venusian surface rock densities as measured

by the Venera  Landers (Surkov et al, 1984).

(c) 7hermal  Compensation Model

Finally, we considered thermal isostasy  with lithospheric  thinning. For this

model, illustrated in Fig. 6c, we are concerned with compensation/support of topography

associated with thermal thinning (by conductive heat transport) of the lower lithosphere.

Here, part of the thermal lithosphere has been converted into hot, low density

asthenosphere  due to heating from below (eg basal heating from ascending mantle

plumes). This results in an elevation (thermal swell or uplift) of the lithosphere’s upper

surface due to thermal expansion, while at the same time the density of the lower

lithospheric  material decreases as it is replaced by hot a-sthenospheric  material. This low

density material supports the surface swell in a way analogous to Airy compensation’s
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crustal roots (Crough, 1978; Morgan and Phillips, 1983; Smrekar and Phillips, 1991). In

what follows we will assume as a first order approximation that there is no heat

production (sources) in the Venusian lithosphere. This is valid if the concentration of

heat producing elements in the crust is less than 20% of the total and the lithosphere

thickness is small compared to that of the Venus mantle (Turcotte,  1993). We also

assume here that the lithosphere is a conductive layer atop an asthenosphere  (upper part

of the mantle) which is convecting and isothermal (temperature Tm) . The surface

temperature T~ and the thermal parameters of the Venus lithosphere are considered

constant in time.

In this work we assume the temperature distribution (profile) T in the Venusian

lithosphere has an error function dependence on depth which can be written as (Turcotte

and SchubeK  1982):

(23)

where erfc is the complementa~  error function (Abramowitz and Stegun,  1965, p.297), t

is the time coordinate , y the depth coordinate, K the thermal diffusivity for the

lithosphere, T~ the surface temperature, and Tm the mantle (asthenosphere)  temperature.

As seen in Fig. 6c, we can look at this one-dimensional heating problem with thinning of

the lithosphere as being the reverse of the cooling and thickening of the ocean lithosphere

on Earth by conductive cooling of a semi-infinite half space solid (Turcotte and Oxburgh,

1969). For our problem, a linear ecluation  of state is assumed, of the form:

P’Pm=CXPm  Urn-T) (24)

where ct is the volume coefficient of thermal expansion, and p the density in the

lithosphere corresponding to a temperature T. One can then express the w parameter



Page 23

shown in Fig. 6C (analogous to the thermal subsidence in the case of the cooling problem)

using the condition of HE of Eq. (15). Indeed, substitution of the temperature profile of

Eq. (23) into Eq. (24) and then substituting the result in Eq, (15) yields (Turcotte  and

McAdoo, 1979):

w = ?cx (Tm - ~,) (g)l~ (25)

For the lithospheric  temperature distribution given in Eq. (23) we can then give an

(arbitrary) definition of the thermal lithosphere thickness yL. Indeed, a reasonable choice

is (?lrcotte  and McAdoo, 1979, Turcotte and Schubert, 1982: Tm - T = 0.1 ( Tm - T~) at

y = yL (t). Thus the thinned thermal lithosphere, m a thermal boundary layer (Turcotte

and Schubert, 1982), is the near surface region where there is a significant temperature

change. Using Eq. (23) and our definition of the them~al  lithosphere thickness we can

then express yL as a function oft:

yL (0  =  2 (Kt) li2 erfc-l  (0.1) = 2.32 (ti)ln (26)

That is the thickness of the thermal boundary layer is 2.32 times the characteristic thermal

diffusion distance (Kt)llL. Then, using Eq. (26) to eliminate tin Eq. (23), the temperature

profile in the lithosphere can be written in terms of the dependent variable y l, as:

Similarly, the corresponding value of w can be written from Eq. (25) as:

2c( (Tm -- T,) Y1
w  =: ——--—

2.32 & ,

(27)

(28)
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A reference state is defined as corresponding to the unperturbed lithosphere, that

is the situation when the lithosphere has not yet experienced basal heating and thinning.

We will note as y~o the thickness c>f the lithosphere in the reference state, corresponding

to zero thermal elevation (ie hth = O) with respect to the reference sphere (radius ~ =

MPR = 6051.839 km). With W. the corresponding reference state value of w, we then

have (as seen in Fig. 6c):

hth =Wo -w= 0.486a (Tm - Ts) (yLo - YL) (29)

with yL the thickness of the thinned lithosphere, corresponding to an elevation of h~, and

YLO - yL representing the thickness of lower lithosphere which is now asthenosphere  at T

= Tm. Note that we have WO = h~m, with h~m defined as the maximum thermal

elevation (uplift) attainable, and corresponding to a totally thinned lithosphere (ie yl. = O).

We can then use Eq. (16) (HOT formula) along with the equation of state Eq.

(24) and the expression for the temperature distribution in Eq. (27) to obtain the geoid

anomaly NW corresponding to a surface elevation of h fully compensated by thermal

thinning of the underlying lithosphere. With respect to the reference state defined above,

the local geoid anomaly for this situation is given by:

[
27c G Pm CX(T., -T,) ~+za(Ti--T,) ] (Y? -  YI?O)

Nth = -
a (2.32) 2

Using Eq. (28), Eq. (30) can be re-written as:

‘G~m p +ju(f_,.,J] b’%”)Nth = — — .

(30)

(31)
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And, with h = W,D -w and W. + w =: 2 WO - h, Eq. (31) finally yields:

ZG pm
[

Nth = go  —--1 + za (T~l – T,) ] (2wOh-h2) (32)

which is a quadratic function of elevation h as was the Airy compensation model formula.

For the parameters of the thermal compensation model applied to the Venus data we

took: a = 3x10s “K-1 and ~ = 1 mrnz s-l as for the Earth, and T~ =; 750”K, Tn) =

1500”K,  and pm=  3300 kg m-s (lMcotte,  1993).

V. REGIONAL CORRELATIONS: RESIJLTS AND DISCUSSION

Using selection criteria bmcd on tectonic style, regional morphology and gravity

characteristics Solomon et al (1992) divide the Venus highlands into three bassic classes.

Representatives from two of these classes, namely broad topographic swells (or “volcanic

rises”) and plateau - shaped highlands, can be found in the equatorial zone on Venus. In

this section, we consider and discuss correlations for sets of averaged data points for

observed topography, gravity, and geoid anomalies as well as gravity from the

uncompensated topography for five sample regions located in the Venusian equatorial

highlands and including representatives from both the swell-type and plateau-shaped

morphologies.  One sample is in Beta Regio and the other four in Aphrodite Terra, the

largest highland area on Venus. This continent-sized region straddles the equator from -

45”E < longitude <21O”E and encompasses a variety of terrains. The changing

physiography across its length makes it straightforward to divide Aphrodite into four well

defined areas including, from West to East (Solomon et al., 1992): Ovda and Thetis

Regiones, a central Chasmata area and the Easternmost Atla Regio.

For each of these five regions we selected a 30° x 30° area to examine the

regional h, N data correlations in the light of the three isostasy models discussed in

Section IV. The chosen areas are outlined by black squares in Fig. 1a and 1 b. For our
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BI~ta Regio sample we have: -90 °<longitude<  -600, and 10°<latitude< 400. Beta is an

example from the broad topographic rise category. It is a domal  structure, approximately

3000 km across, with heights reaching -2-3 km above the mean pkmet.ay  radius (MPR)

from center to edge of the structure (Bindschadler  et al., 1992b).  It is also a region of

moderate extensional deformation but has extensive shield volcanism (Senske et al,

1992). The topographic peaks of Beta, believed to be volcanoes, include Rhea Mons to

the North (peaking at -5.5 km above MPR) in a region of tessera terrain, and Theia

Mons, to the South, a shield-shaped structure peaking at -4 km above MpR. Both  show

evidence of collapse (Ford and Pet tengill,  1992). Running approximate] y North- South in

Beta Regio  is Devana  Chasma,  a major trough (-1-to-2 km deep) believed to be a rift

valley (McGill et al., 1981; Solomon et al., 1992).

The Ovda sample (75° dongitude<  105°, and -20 °datitudee  10c’), and the Thetis

sample (1 10° <longitude 140°, and -25 °datitudee  5° ) are typical examples from the

topographic plateau class of highlands. They are characterized by highly deformed and

complex ridged terrain (often interpreted as products of crustal shortening) and limited

volcanism, with mean elevations of - 4 km above the MPR (Solomon et al., 1992;

Bindschadler  et al., 1992b).  Both these regions have rugged terrain over a wide range of

horizontal scales. This was analyzed earlier in more details for Ovda Regio in terms of

roughness amplitudes and fractal behavior for 36< h <703 km (Kucinskas et al., 1992) .

Unlike Ovda, Thetis Regio has less steep margins. Also, the highest points of Thetis are

found along the area’s margins with a noticeable offset of the positive geoid and

topography anomaly highs (Bindschadler  et al., 1992b).  Our central Aphrodite sample

(145° <longitude< 175°, ,and -25 °<latitude< 5° ) is part of a highly defcmned  “Chasmata

area” which is in a class of its own. The region has mean elevations of only 1-1.5 km

above MPR and presents a series of elongated ridges and linear to arcuate troughs (Ford

and Pettengill,  1992; Solomon et al., 1992). The deepest troughs are Diana and Dali

Chasmata,  Finally, we considered a sample in Atla Regio (180°<longitude< 210°, and
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-1 5°<latitude<  +15° ). This is another example of Beta-type topography (ie a broad

highland dome), with mean elevations of 2-4 km above

numerous volcanic centers (Solomon et al., 1992). The

shield volcanoes Ozza Mons (6 km) to the Northeast,

MPR, extensional features and

two main peah in Atla are the

and Maat Mons (9 km) in the

central

Regio.

part. Overall, Atla is mom strongly peaked and less circular in shape than Beta

For each of the 30° x 30° areas we considered in this work we determined mean

values over 5° x 5° grid squares of observed topography anomaly h = R - Ro, and geoid

anomaly N using Eqs. (1) and (5) and the spherical harmonic models for Venus data

discussed in Section II, respectively. We also obtained 5° x 5° data values in each

selected area of observed gravity anomaly Ag, using Eq. (8), and of the Bougher  gravity

Agu and Bougher  gravity anomaly BA =: A g U - A g, where A g 1’ is the gravity

corresponding to the uncompensated topography and is obtained by replacing

A~h,  and Ask in Eq. (8) by CL and Sin of Eq. (14).

For a given sample region we first performed a linear least squares fit for the 5° x

5° data values of BA plotted against AgU. We define the regional degree of compensation

C (Turcotte et al., 1981) as the slope of the best fit regression line for the considered data.

We then performed a least squares fit of the observed geoid anomaly N versus elevation h

regional data points to the Pratt, Airy, and thermal correlation models respectively. For

each sample area, fitting of the three isostasy models to the h, N data yields values for

the following model parameters: the reg,ional  GTR (in m/km) or the slope of the best

fitting correlation line and the corresponding

from Eq. (20) for the Pratt mechanism. For

crustal  thickness H (km) and, for a given

corresponding total crustal thickness T(h~M) =

regional depth of compensation W (km)

the Airy correlation: the zero-elevation

maximum regional elevation hmax, the

H + b (h~,,) with b the Airy root from Eq.

(21 ). In this paper, h~a,  is defined as the maximum amplitude for the topography on a

regional scale, with k - 3000 km for our samples. Finally, for the thermal thinning
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model, the thickness yLo of the unperturbed (zero-elevation) thermal lithosphere,

hth using Eq. (28). From section IVobtained from the best fit regional parameter W. = ~m .

subsection c, we recall that hth~aX is the maximum elevation attainable with the thermal

thinning model for the observed data in the considered area and corresponds to yL = O.

For each sample area and for a maximum observed regional elevation hmax we also

evaluate the corresponding thickness of the thinned lithosphere yL(hmax),  if applicable,

using Eq. (29). For all considered areas a goodness of fit test (chi-square) was performed

to assess how close the h, N data is to a linear Pratt model correlation and a quadratic

Airy or thermal model correlation, respectively. A measure of the goodness of fit is

given in each case considered by thes statistic or root mean squared error (rinse) for then

modeled data points (Milton and Arnold, 1986): s = (X2 /V)l’2 , with X2 the minimized

chi-square  merit function and v =; n - p = the number of degrees of freedom of the

problem, p being the number of free parameters of the considered model (p = 2 for the

linear correlation and p=3 for the quadratic correlations), and n = 36 for all five regions

considered in this study. Results of the various fits are given in Table II.

In Fig. 7 we show scatter plots of BA versus Ag” for 36 5° x 5° data points

(shown as open circles) in each of our five chosen areas. From the results of the degree

of compensation fits shown in Table II it can be seen that C is high for all the considered

highland regions. However, compensation of these equatorial highlands seems

particularly significant in the hig}l  - plateaus (with Ovda and Thetis 89% compensated)

while the swell-type areas appear to be less compensated. Fig. 8 shows scatter plots of N

versus h (open circles) for the 36 observed data points in our regions of interest. The best

fit correlation for the Pratt, Airy, and thermal thinning models are shown as solid curves

in Fig. Sa, 8b, and 8C respectively. Overall, we note that for each area regional h, N

data correlations display strong coherence. However, from Table II we see that for all

three models considered there are large variations in model parameters between the

regional fits. Another trend readily apparent from the scatter plots in Fig. 8 is the
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positive geoid offset observed at the regional level (ie N non zero for zero elevation h in

some areas). This offset or regional anomaly is large for Atla and Thetis Regiones  and

the Chasmata  area but negligible in Beta and Ovda. In what follows we discuss results of

fits of each of the three theoretical correlations to the regional h, N data,

From Table II we can see that for the Pratt regional correlations there is a definite

grouping into classes based on values of GTR and associated depth of compensation W,

Indeed, these parameters are largest for the topographic swells of Beta ancl Atla Regiones

while the Ovda and Thetis Regioncs plateaus have smaller Pratt parameter values. The

Chasmata  area sample has somewhat intermediate values. These observations suggest the

applicability of different mechanisms of compensation for different classes of equatorial

regions on Venus. This seems particularly true for Aphrodite Terra, where the numbers

in Table 11 show a significant increase in regional GTR and W from the west to east. The

numerical values we obtained here for regional GTR and the tendency to categorize the

Venus equatorial highlands based on regional correlations of geoid and topography data

confirm for the Magellan  data results of previous investigations conducted with lower

resolution PVO data (Herrick et al. 1989; Black et al, 1991; Smrekar and Phillips, 1991).

If we assume isostatic compensation mechanisms for the equatorial highlands on

Venus then there is a similarity between the results obtained in this work for the Beta,

Atla, and Chasmata  area h, N data in terms of Pratt linear correlation and results obtained

for oceanic swells on the Earth (eg the Hawaiian swell). Physical mechanisms which

have been invoked to explain observed correlations of Earth geoid and depth

(bathymetry)  variations in these types of oceanic regions include anomalously low

densities of mantle rocks ,beneath  the swells to depths of W (Haxby and Turcotte,  1978),

and therm,al  lithospheric  thinning (Crough, 1978; Turcotte,  1986). The Ovda and Thetis

group’s linear correlation results are similar to those obtained for ocean plateaus on Emth

(Turcotte,  1986). Thickening of the crust is often invoked as a compensation mechanism
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for these terrestrial oceanic features (Crough, 1978; Sandwell  and MacKenzie, 1989;

Marks and Sandwell,  1991).

For the Airy compensation model correlations the best fit parameter values for H

show the same regional tendencies as the Pratt model’s GTR and W parameters, with a

West to East increase in H in Aphrc)dite  Terra. For Ovda Regio (H -50 km) and Thetis

Regio  (H - 60 km), the zero-elevation crustal  thickness seems realistic if one

envisages a thick thermal lithosphere on Venus. The value of H for the Chasmata  area

sample could be considered, although at H -100 km it is probably already a little too

high, even with a thick lithosphere. If isostasy is to be considered here, we probably have

to consider a mix of Airy-compensated crustal  thickening with another model’s

component. For the two other regions we considered, namely Beta and Atla Regiones

regional H values required to account for elevations typically found in those areas are

probably unrealistic (H >150 km) even if a very thick lithosphere is envisaged. If there

is Airy compensation there, it is probably a weaker component in a mix of other

mechanisms.

In the case of the thermal correlations it must first be noted (Fig, 8C and Table

11) that the lithospheric  thinning model barely manages to reproduce the Thetis Regio

data, with h~aX = 3.0 km compared to the observed value of hm~X  -3.6 km for the

considered region . This is an inclination that the thermal model alone is probably

inadequate for fully explaining the observed data in Thetis. Also, the thermal model

badly fails for the Ovda Regio data, with h$,X = 2.7 km much less than the observed

hm ax -4.0 km . Clearly, if there is a thermal isostasy component in Ovda it must be very

weak. For the other three regions we considered a thermal thinning model can account

for the observed topography and geoid  anomaly data. However, it seems reasonable to

assume that it is quite possible there are variations in the thermal component’s strength

even between those higher GTR regions. ln any case, if the thermal model is to
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observable in those areas, a thick zero-elevation thermal lithosphere is

required of the order of 300 km.

From the preceding results it thus appears that the geoid - topography

correlations observed in the Venus equatorial highlands considered in this work can be

reproduced, as is the case on the Earth, by isostatic compensation mechanisms involving

(and quite possibly combining) variations in crustal thickness (Airy compensation) and

variations in thermal lithosphere thickness (thermal thinning) provided a thick crust and

unperturbed thermal lithosphere are assumecl on Venus, with zero-elevation thermal

Iithospheric thickness y~o of about 300 km. One recent model proposed to obtain a thick

Venusian lithosphere is Turcotte’s (1993) episodic hypothesis for tectonics on Venus.

Turcotte supposes that loss of heat from the intenor of Venus is strongly time - dependent

(ie non steady-state). Indeed, crater statistics on Venus strongly suggest that a global

resurfacing event occurred on the planet -500 ~: 300 My before present (BP) and that the

global lithosphere on Venus later stabilized (Schaber  et al., 1992 a, b). Thus Turcotte

postulated that the global lithosphere on Venus, after stabilizing some 500 My BP has

since then been a single rigid lithospheric  plate that has thickened due to conductive

cooling. A straightforward calculation then yields a thermal lithospheric  thickness of

-300 km reached after some 500 My.

Based on the above premises, modes of isostatic compensation could be

distributed among the highland areas considel-ed  in this study as follows: for the low

GTR area in Ov(la and Thetis Re8iones,  wc would favor mainly Airy compensated

crustal thickening with a zero-elevation crustal thickness of around 50- 60 km. For our

Chasmata  area sample,. we would consider Airy isostasy with perhaps a thermal

compone~t.  Finally, for the large (;TR  areas of Beta and Atla Regiones,  a very strong

thermal compensation component. indeed, the very large values of H obtained for these

two regions are unrealistic even with a 300 km thick thermal lithosphere. It is also

interesting to try and explain the Eastward increase in Regional Pratt and Airy model
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parameters observed across thelength of Aphrodite Terra. Apossible explanation of this

phenomenon could be that Aphrodite is a site of thermal isostasy decay, experienced from

East to West, Indeed, Herrick et al. (1989) suggested that the Eastward increase in depths

of compensation in Aphrodite reflects an age progression for underlying mantle plumes

responsible for maintaining (dynamically in their analysis) topography highs in this area.

To the East would be younger, more vigorous, plumes while older decaying plumes

would be located in the West. In the context of our isostatic approach to compensation of

Venusian highlands we suggest there may very well be such a correlation between Airy

and Pratt model parameters and mantle plume age/strength operating East of Ovda Regio.

However, temporal decay of plume strength from the east to the west beneath Aphrodite

would  be associated with a decaying thermal thinning compensation of surface

topographic swells. Thermal isostasy decay was proposed by Sandwell and MacKenzie

(1989) as an explanation for intermediate GTR values observed for cel~ain  thermally

older oceanic swells on the Earth, in association with an Airy isostasy component.

v ] . CONCLUSIONS

In this paper we have taken an isostatic  approach to study the compensation

mechanism in five 30° x 30° areas characteristic of the main classes of highlands found

in the equatorial zone on Venus. Gridded mean values of Bougher gravity and observed

gravity, geoid and topography anomalies were obtained for each area using a 120x 120

degree and order spherical harmonic model for the Venusian global topography produced

using Magellan  and PVO altimetry data and a 60 x 60 harmonic solution for the Venus

geopotential  which incorporates new tracking data from the Magellan

(cycle 5) as well as previous Magellan cycle 4 and PVO tracking data.

A ‘global spectral study conducted on these harmonic models

circularized orbit

reveals that their

power spectral density obey a power-law scaling. The Venus topography spectrum has

the characteristics of Brown noise (spectral slope ~ - 2) similar to Earth topography but

with lower amplitudes, and a slightly shallower spectral slope, a possible consequence of
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the dominant “rollingplains”  Venusian  topography. Thespectral  slope for the Venus

geoid spectrum is close to the value predicted by Kaula’s law (~ - 3) which applies to the

Earth’s geoid spectrum. Adegree analysis of the GTRfor the harmonic models further

shows that Venusian topography is substantially compensated. If a global Airy

compensation is assumed then most of the topography on Venus is compensated at depths

in excess of 100 km implying a thick crest and lithosphere.

For the regional study in this paper three types of models were considered to test

the 36 geoid versus topography anomaly data points in each of the chosen areas for

theoretical isostasy  correlations: Pratt and Airy isostatic compensation mechanisms, and

a thermal isostasy model with support of the topography obtained via thinning of the

thermal lithosphere by reheating. We also examined linear correlations of Bougher

anomaly versus Bougher  gravity to estimate regional degrees of compensation.

In all five regions we analyzed the h, N data generally showed little scatter. For

the plateau - shaped areas of Ovda and Thetis Regiones  compensation was the highest.

Ovda and Thetis Regiones  feature the lowest values for geoid to topography ratio, Pratt

depth of compensation, and Airy zero-elevation crustal thickness (H -50 and 60 km

respective y) among the samples we considered. For the Chasmata area values for these

parameters are somewhat higher with H- 100 km. The thermal thinning model barely

manages to account for observed elevations in Thetis and fails to reproduce most of

Ovda’s high topography. It is thus suggested that Airy compensation with a thick crust

and lithosphere is the dominant support mechanism for topography in Ovda and Thetis

whereas a higher value of H for the Chasmata  sample might indicate a mix of Airy and

thermal components in this area,

The topographic swells of Beta and Atla Regiones have somewhat lower degrees

of compensation. Pratt and Airy model parameter values estimated for these regions are

significantly larger than for the plateau class topographies. In particular, Airy regional

crustal  thicknesses seem unreasonably large (H-200 km) even if a thick lithosphere is
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assumed. The thermal isoslasy model easily accounts for the observed topography and

geoid anomaly data in these regions but requires thinning of an

thermal lithosphere. This suggests that thermal thinning is the

isostatic compensation in these two areas.

initially thick (-300 km)

dominant component for

Four of our samples were chosen in Aphrodite Terra namely, from West to East:

Ovda, Thetis, the central Chasmata  area, and Atla to the East. Results for these areas

shown a significant Eastward increase of Pratt

continent. We propose that this phenomenon

plumes responsible for reheating and thinning

the West in Aphrodite.

and Airy model parameter values for this

might be attributed to a decay in mantle

of the lower lithosphere from the East to

On the Earth, most of the high topography

variations in crustal  (Airy compensation) and/or

thicknesses. The present study indicates this may

can be directly associated with

lithospheric  (thermal isostasy)

also be the case for the Venus

equatorial highlands provided Venus has a thick unperturbed thermal lithosphere with

thickness of about 300 km. One way to account for such a thick lithosphere would be

conductive cooling during the past - 500 My, as suggested by Turcotte (1993). In future

investigations we will conduct a systematic analysis of compensation for the Venus

highlands from an isostatic  standpoint, implementing and developing the technique

introduced in the present work. The quantitative analysis of gravity data covering the

entire planet should be greatly improved once geopotential  models incorporating the

complete circular orbit tracking data become available.
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TABLE I
Results of Linear Fits for Planetary Spectra

Spectrum Venus Earth

K P K b

Topography -3.34

Geoid -1.80

1.73

2.91

-4.03

-2.13

2.08

2.79



TABLE II
Parameters for Regional Model Fits

Region h ~aX CX1OO GTR W ‘Pratt H  T  (hmJ OAiw h:aX YLO YL(hmaX)  ~th
km %0 mfkm km km km km km km

Beta 2.8 52.; 3:.9 Arj~ ! 6.5 223 2A4 16.4 4 . 0 369 113 17.5

Ovda 4.!3 89.0 9.0 115 6.7 49.8 78.8 6.9 2.7 250 NA 11.1

‘Thetis 3.6 g9.7 ~?.3 :44 :2.8 55.7 gf.~ :2.9 3.0 275 ~A fif.7

Chasmata  1. 2 79.9 15.1 194 7.1 107 115 7.2 1.8 165 55.0 6.7

Atla 3.0 63.8 24.9 319 12.0 167 189 12.1 4.0 362 88.0 12.6

lb
ul
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FIGURE CAPTIONS

Figure 1: Contour maps of Venus in cylindrical equidistant projection. Negative

contours are dashed, positive contours solid. (a) Topography variations

above and below a spherical reference surface with radius & = 6051.839

km and computed from a 120x 120 spherical harmonic model for Venus

topography discussed in the text, truncated at degree and order 60. The

contour interval is 500 m. (b) geoidal undulations computed from the 60

x 60 MGN P60FSAAP model for Venus geopotential described in the

text. Geoid anomalies are measured with respect to a best fit sphere of

radius R. and the contour interval is 10 m. The black boxes in Fig. 1a

and Fig. lb outline the equatorial areas analyzed in this paper.

Figure 2: Power spectral density of global observed topography for Venus (a) and

the Earth (b), plotted against wave number on a log-log scale as open

circles. The solid lines illustrate the best flt correlations with a power law

with spectral slope -[i.

Figure 3: Power spectral density (PSD) of observed global geoid anomaly for Venus

(a) and the Earth (b) plotted against wave number on a log-log scale (open

circle). The straight scdid lines are the least-squares fits to a power law

with spectral slope -~. in Fig. 3a, geoid  PSD values corresponding to the

biased MGNP60FSAAP solution are plotted as open circles whereas the

unbiased solution PSD’S are plotted as a dotted curve. The dashed curve in

Fig. 3a is the geoid PSD for an Airy isostasy model for Venus topography
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compensated at a depth of 150 km. In Fig. 3b the open circles correspond

to data from the JGM-2 model for the Earth’s geopotential.

Figure 4: Degree geoid to topography ratios (GTR) for Venus data plotted against

degree ! on a log-linear scale. The open circles are for observed data and

the solid curve is for an uncompensated topography model.

Figure 5: Degree geoid  to topography ratios (GTR) for Venus plotted against degree

P. The GTR for observed Venus data are plotted as open circles. The

solid curves are degree GTR for Airy-type compensation models at depths

of 50, 150, and 300 km.

Figure 6: Pratt - Hayford (a), Airy - Heiskanen  (b), and thermal lithospheric

thinning (c) models of isostatic compensation considered in this study.

Figure 7: Scatter plots of Bougher anomaly (BA) versus Bougher  gravity (Agu) for

the five equatorial regions considered in this paper. The open circles

correspond to the data points. The solid lines are best fit linear

correlations with the slope yielding a degree of compensation in each

sample region considered (see text).

Figure 8: Scatter plots of geoid anomaly (N) versus height anomaly (h) for the five

equatorial areas considered in this paper. Open circles are data points.

Solid curves are best-fit theoretical correlations for the Pratt (a), Airy (b),

and thermal thinning (c) models.
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